
O 
I O  

i-l 
N 
I w 

ABSTRACT 
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4- A new technique has been designed t o  a id  the  p r o g r m e r  i n  accounting 

for computational errors, that is ,  rounding-ofl? and truneat%on e r ro r s  

i n  computational programs. T h i s  scheme i s  one i n  which signed e r ro r s  

based on higher accuracy calculat ions ra ther  than e r ro r  bounds a r e  calcu- 

la ted.  The discussion includes a formulation of techniques for obtaining 

r e a l i s t i c  e r ror  estimates for a wide range of computational problems and 

methods for report ing these e r rors  t o  the  programer i n  an analysis  of 

e r ror .  A s e r i e s  of t es t  programs has been run i n  t h i s  ar i thmetic  mode t o  

obtain i n i t i a l  exljei-iezc~~ 

curious e f f ec t  when t h e  problem has more than one solut ion.  

This experience i s  reported, as well  as a 
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SUMMARY 

.<;. A new technique has been designed t o  account f o r  computational 

e r rors ,  t h a t  i s ,  rounding off  and truncation e r ro r s  i n  computational 

programs. Each number of t h e  system is represented by two floating-point 

'numbers, one representing t h e  nominal precis ion r e su l t ,  and t h e  other 

representing t h e  signed accumulated e r ror  based on higher accuracy calcu- 

l a t ions .  The discussion includes a formulation of techniques f o r  obtain- 

ing r e a l i s t i c  e r ro r  estimates for a wide range of computational problems 

-ma --&L,.d- 0--- - - - - -  
arru l l l c b ~ ~ ~ ~ ~  IUI' repori ing these m r s  t o  t h e  programmer t o  a i d  i n  an 

ana lys i s  of e r ror .  Final ly ,  t he  experience achieved by using t h i s  a r i t h -  

metic i n  several  tes t  problems, which w e r e  selected t o  cover a va r i e ty  of 

d i f f i c u l t i e s ,  i s  reported. 

INTRODUCTION 

The support of research programs of a s c i e n t i f i c  center of ten in- 

volves f resh  computational problems for which t h e  nature of t h e  solution, 

or a guaranteed method of achieving it, is not known. Assuming t h a t  such 

a problem can be formulated and a possible computational procedure devised, 

i f  t h e  answers are t o  be meaningfully interpreted,  t h e  computational pro- 

gram must then be assessed w i t h  an analysis of t h e  various e r ro r s  in t ro-  

duced by the  program and data. This type of analysis  is especial ly  d i f f i -  

c u l t  t o  perform, s ince it usually involves a greater  complexity of analysis  

* NASA Lewis  Research Center, Cleveland, Ohio. 
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than t h e  program i t s e l f .  Moreover, t h i s  analysis  is fur ther  complicated 

by the  use of floating-point arithmetic. 

p lex i ty  of e r ro r  analysis  of problems i n  floating-point ar i thmetic ,  some 

automatic technique is  needed t o  a i d  the analysis  of such problems. The 

automatic techniques t h a t  have been proposed i n  t he  l i t e r a t u r e  are based 

on either performing t h e  calculations exclusively w i t h  s ign i f icant  d i g i t s  

or calculat ing an e r ro r  bound along with t h e  nominal precision r e su l t .  

Since t h e  estimate of e r ro r  i n  each of these ari thmetics i s  a r r ived  a t  by 

accuracy reducing calculat ions,  t h e  estimate of e r ro r  can be expected t o  

be pessimistic.  

As a consequence of the  com- 

The purpose of t h i s  paper i s  t o  discuss a new technique t h a t  i s  de- 

signed t o  account f o r  computational errors,  that  is, rounding-off and 

t runcat ion errors .  

than an e r ror  bound is  calculated. In order t o  achieve r e a l i s t i c  e r ro r  

estimates, the e r ro r  estimates are based on higher accuracy calculations.  

Methods are presented f o r  obtaining estimates of e r ro r s  i n  ari thmetic 

operations, i n  nonalgebraic function evaluation, and i n  i t e r a t i v e  processes. 

This technique is  one i n  which a signed e r ro r  rather 

Because there  are two answers at each point i n  the computations, 

branching on value may become indecisive. T h i s  indecisiveness i s  a 

troublesome fea ture  i n  t h e  management of a problem, but it may a l so  be an 

invaluable a id  i n  debugging. This use of e r ror  ar i thmetic  and others are 

discussed. 

Final ly ,  the  experience that was gained by running severa l  problems 

i n  t h i s  ari thmetic mode, including a curious e f f ec t  when t h e  problem had 

more than one solution, i s  discussed. 
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ARITHMETIC WITH SIGNED ERROR 

A scheme that  i s  proposed a t  the Lewis  Research Center is  one i n  

which signed er rors ,  rather than error bounds, are calculated. Each 

number 

(n, E,). 

c i s ion  r e s u l t ,  while  En represents t h e  accumulated e r ro r  which cons is t s  

of the generated error of t h e  operation and e r ro r  propagated from previous 

calculations.  

( c ,  E,) t h e  r e s u l t  of an ari thmetic operation, t h e  computed e r ro r  estimate 

E, 

mitted by the machine representation of 

+, -, and x are the  generated e r rors . )  

N of t he  system is  represented by two floating-point numbers 

During t h e  ar i thmetic  operations, n represents  a nominal pre- 

With (a, Ea) and (b,  Eb) assumed as t h e  two operands and 

i s  then calculated by the formulas i n  Table I t o  the precision per- 

(The bracketed quant i t ies  i n  E,. 

TABLE I. - FORMULAS FOR COMPUTING ESTIMATE OF TOTAL ERROR 

Operation, 
OP 

Computed e r ro r  estimate, 
E C  

[(a + b )  - c ]  +Ea + % 

[ ( a  - b)  - C] + Ea - Eb 

[ab - c ]  + % + bEa + Ea% 

(a  + Ea> - c(b  + %) 
(b + Eb) 

Each s t e p  of t h i s  ari thmetic i s  equivalent t o  t h a t  of performing t h e  

computations simultaneously with’ a nominal precis ion ari thmetic and an 

extended precision ar i thmetic  and computing the  estimate of e r ror  by 

taking t h e  difference of the  two values. 

sen t  accurate estimates of t h e  e r ror  i n  t he  nominal precision result 

The formulas i n  Table I repre- 
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c = a op b. 

is  insignif icant  i f  t h e  e r rors  are small, but w i l l  not be negligible if 

t h e  e r ro r s  a re  large.  

nominal precision r e s u l t ,  i s  an accurate remainder, and 

used e f f ec t ive ly  as t h e  sum of b 

t i o n  of t h e  nominal precision r e su l t .  

Attention i s  cal led t o  the  f a c t  that i n  mult ipl icat ion EaEb 

In  division, a + Ea - c ( b  + Eb), where c i s  t h e  

b + % can be 

and i t s  e r ro r  reduced t o  t h e  representa- 

A t yp ica l  r e s u l t  of a simple ari thmetic operation i s  shown by t h e  

decimal addi t ion 1 / 7  + 8/9, where 1 / 7  

8/9 5 (0.888889, - 0. l l l l l lx10 '6) .  

t i o n  65/63 A (L- 3 1 7 5 ,  - 2.396825~10'~). 

(0.142857, 0.142857~10'~) and 

Their sum, 65/63, has t h e  representa- 

The e r ro r  -0.396825~10-5 i s  

made up of two p a r t s  - t h e  generated error [(a + b )  - c! = 0.888889 

+ 0.142857 - 1.03175 = - 0 . 4 ~ 1 0 ' ~  and t h e  propagated e r ro r  

0.142857~10'~ - 0.111111~10'~ = 0.31746~10'~. 

rounded t o  s ix  s igni f icant  decimal d i g i t s  is -0.396825~10'5. 

Ea + % = 

The t o t a l  computed e r ro r  

A second example, t h e  product of 13/9 and 5/7 has as i t s  input t h e  

number pa i r s  (1.44444, + 0.444444~10'~) and (0.714286, - 0.285714~10'~), 

which y ie ld  t h e  pa i r  (1.03174, 0.603174~10'~), whether the  product 

i s  included or not,  and whether t he  low order pa r t  of t he  product i s  

rounded or not. The product EaEb is generally not important i f  t h e  

e r ro r s  are s m a l l ,  but because e r ro r s  can and do become large,  an accurate 

e r ro r  t r a c e  requires  t h e  consideration of t h i s  term through some a r t i f i c e .  

The subtract ion 11/12 - 10/11 (without d e t a i l )  leads t o  the  pa i r  

.. 

Ea% 

(0. 757600x10'2, - 0.242424~10-~) ,  which i l l u s t r a t e s  t h a t  d i g i t  posi t ions 

of an e r ro r  estimate may overlap t h e  d i g i t  posi t ions of t h e  nominal pre- 

c i s ion  r e s u l t .  It is  similarly possible f o r  t h e  ranges of d i g i t  posi t ions 
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t o  be d i s jo in t .  When the  e r rors  a r e  small, c + E, is very nearly equal 

t o  t h e  r e s u l t  t h a t  would have been obtained by t h e  systematic use of ex- 

tended precision. 

ESTIMATE OF ERROR I N  THE EVALUATION OF 

NONALGEBRAIC FUNCTIONS 

Throughout t h i s  discussion we have i n  mind t h a t  two r e s u l t s  are 

avai lable  i n  t h e  computer after each calculation. 

a t  through nominal precision ari thmetic,  and t h e  other is a more accurate 

standard f o r  gaging t h e  nominal precision r e su l t .  

ment i n  t h e  evaluation of t h e  nonalgebraic function 

t h e  nominal precis ion number and (a t- Ea> r e p ~ e s ~ . t s  a high p e c l s l o n  cai- 

culated standard. Given some procedure f ( x )  f o r  approximating t h e  func- 

t i o n  

must be arr ived at  through higher accuracy calculat ions,  which must account 

f o r  t h e  generated e r r o r  i n  t h e  approximate procedure 

e r ror  propagated from previous calculations.  Consequently, t h e  e r ro r  Ef 

may be equivalently defined as t h e  sum of t h e  propagated and generated 

e r rors ,  which may be expressed as 

spectively,  which a r e  t h e  same as 

One r e s u l t  i s  a r r ived  

If (a, Ea) is  t h e  argu- 

f ( x ) ,  a represents  

- 

f (x)  i n  nominal precision ari thmetic,  t he  standard f o r  comparison 

- 
f ( x ) ,  as w e l l  as t h e  

- 
f ( a  + Ea) - f ( a )  and 

Ef = f (a + Ea) - f (a).  

f ( a )  - f ( a ) ,  re- 
- 

The value of t h e  function employed i n  nominal precis ion ar i thmetic  

is  customarily obtained by some approximation t h a t  represents a good com- 

promise between accuracy and computer speed. 

mation might be a Tchebycheff polynomial approximation. If Ea i s  large,  

t h i s  procedure could be used t o  evaluate 

Ef.  However, if Ea i s  small, t h i s  approximation would f a l l  short  of 

For example, such an approxi- 

f ( a  + Ea) t o  obtain t h e  e r ro r  
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t h e  goal, s ince t runcat ion error  would represent an important contribution 

t o  t h e  t o t a l  e r ror  and would not be r e f l ec t ed  by the algorithm. A safe 

procedure for  calculat ing 

rout ine based on an approximation such as a Taylor s e r i e s  or continued 

f r ac t ions  that can achieve any necessary degree of accuracy. 

f ( a  + Ea) is t o  have avai lable  a high-accuracy 

ESTIMATE OF ERROR IN ITERBTIVE PROCESSES 

The er ror  i n  an i t e r a t i v e  process is defined as the difference be- 

tween the  asymptotic value of t h e  answer and the machine value after t h e  

kth i t e r a t i o n ,  that  i s ,  Ordinarily, the e r ro r  of the i t e r a t i v e  

process (as w e l l  as the  rate of convergence) during computations is m e a s -  

ured by a value computed by taking the difference of t h e  machine values 

of two successive i t e r a t ions ,  t h a t  is, xk+l - xk. 

i t e r a t i v e  process 

+ (;k+l - xk),  it is  noted tha t  t he  measured e r ro r  of an iterative process 

i s  fu r the r  v i t i a t e d  by t h e  i t e r a t i v e  t runcat ion e r ro r  (G - xk+l).  Conse- 

quently, i n  order t o  estimate r e a l i s t i c a l l y  both t h e  i t e r a t i v e  t runcat ion 

e r ro r  and t h e  rounding error ,  it i s  necessary t o  r ea l i ze  an accurate value 

of t h e  asymptotic value of t h e  answer with higher precision ari thmetic.  

This may be achieved by evaluating the  i t e r a t i v e  process w i t h  e r ror  a r i t h -  

metic, as discussed i n  t h e  previous two sections.  

- - xk. 

- - 
When the e r ro r  of t h e  

- - 
xb, - xk is  expanded by (G - x ~ + ~ )  + (xk+l - xk+l) 

- 

The more e f f i c i e n t  use of t h e  computer may be real ized i n  some la rge  

i t e r a t i v e  processes by understanaing when the error t r ace  needs t o  be 

i n i t i a t e d .  For t h e  c l a s s  of i t e r a t i v e  processes of f i n i t e  i t e r a t ions ,  

such as t h e  method of conjugate gradient o r  Hestene's method of biorthogo- 

nal izat ion,  an estimate of e r ro r  c a n b e  obtained only if  the e r ro r  t r a c e  
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i s  s t a r t e d  at  t h e  start of t he  i te ra t ion .  In  t h i s  respect,  then, these 

i t e r a t i v e  processes must be t r e a t e d  as d i r ec t  or exp l i c i t  evaluations. 

For i t e r a t i v e  processes that yield t h e  answer only i n  the l imi t ,  the  

e r ror  t r ace  need not be s t a r t e d  at the start  of t he  process. Stat ionary 

processes, such as the  methods of  successive overrelaxation, are perhaps 

the easiest t o  e r ro r  t r ace ,  s ince t h e  e r ro r  t r a c e  may be s t a r t e d  at any 

time i n  t h e  process. 

process must be permitted t o  continue u n t i l  both t h e  nominal precis ion 

r e s u l t  and the estimate of e r ror  have converged. Asymptotically s ta t ionary  

processes, such as the  Tchebycheff semi-iterative methods, which are asymp- 

t o t i c a l l y  similar t o  the  successive overrelaxation methods, may be t r ea t ed  

l i k e  s ta t ionary  processes. 

Nevertheless, after the  e r ro r  trace is s t a r t ed ,  t h e  

A spec ia l  problem arises when the measured e r ro r  of the  process is 

used t o  establish a s t ra tegy  as, f o r  example, i n  the use of Kulsrud's 

algorithm f o r  determining t h e  optimal overrelaxation parameter. 

process, i f  convergence is delayed because of rounding-off e r rors ,  t h e  

Kulrud's algorithm indicates  a larger than optimal re laxat ion parameter 

t o  be used w i t h  the  e r ror  t race .  The correct  procedure i n  t h i s  case would 

be e i t h e r  t o  deact ivate  t he  parameter calculat ion or t o  base it only on 

the higher precis ion results. 

I n  t h i s  

BRANCHING 

Branching i n  e r ro r  ar i thmetic  has an added complexity because t h e  

branchings, such as branching on value, can be based on ei ther  of two 

precisions.  

branch i s  undecidable; that is, if x c a l l s  f o r  one choice and x + Ex 

c a l l s  for t he  other  choice. The ef fec t  of a choice of a pa r t i cu la r  

A po ten t i a l  source of d i f f i c u l t y  i n  a program occurs when a 
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di rec t ion  of branching i s  d i f f i c u l t  t o  predict .  

e s sen t i a l ly  the  same data  storage and control  operations and, therefore ,  

lead t o  the  same terminal program step,  the dichotomy is  probably unimpor- 

t a n t  and is, therefore,  ca l led  Mater ia l ;  otherwise it i s  ca l led  a mate- 

r ia l  dichotomy. 

If t h e  two  options execute 

The execution of a program t h a t  contains only immaterial dichotomies 

should lead t o  a good estimate of errors ,  i f  adequate account i s  taken of 

i t e r a t i v e  and funct ional  t runcat ion errors .  

The only assured method of obtaining good er ror  estimates when 

branching i s  doubtful i s  t o  execute t h e  problem twice, t h e  first t i m e  

basing a l l  branching on the  nominal precis ion r e s u l t s ,  and the second time 

basing the  branching on the  sum of the nominal precision r e s u l t s  and the 

estimate of error .  

A report  of t h e  occurrence of dichotomies during these t w o  executions 

of the  problem could be of considerable aid i n  t h e  debugging of a doubtful 

problem. 

USES OF ERROR ARITHMETIC 

The current prac t ice  i n  most computer i n s t a l l a t ions  is  t o  compile a 

program t o  run i n  s ing le  precis ion arithmetic. 

run i n  t h i s  mode and t h e  solut ion i s  found t o  be i n  doubt, t h e  program i s  

run i n  a double precis ion ari thmetic.  

l e f t  without an estimate of error.  

metic proposed i n  t h i s  paper is  t o  give t h e  programmer an estimate of 

e r ro r  t o  a i d  i n  an e r ro r  analysis. 

l a t e d  on a higher precision basis ,  the number 

After t h e  program has been 

The programmer, however, is s t i l l  

The primary motivation f o r  t h e  a r i th -  

Moreover, s ince t h e  e r ro r  is calcu- 

x + E x  represents  a higher 
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accuracy number. 

more informative r e s u l t  than t h a t  obtainable from double precis ion calcu- 

la t ions .  

The e r ror  ari thmetic then gives the programmer a much 

The first task  of a programmer t ry ing  t o  improve a solut ion t h a t  is 

unsat isfactory i s  t o  f i n d  where i n  the program a de ta i l ed  analysis  would 

be prof i tab le .  Since the e r ror  ari thmetic can cope with both la rge  and 

small e r rors ,  it can be used t o  t r a c e  the  e r rors  on a dynamic bas is  and 

loca te  code sequences for further study. 

Improved performance i n  the  solut ion of large problems can usual ly  

be accomplished by (1) loca l  improvement, ( 2 )  extended precis ion calcula- 

t i ons ,  and (3) complete reprogramming. 

Local improvements can be made only up t o  the minimum.unavoidable 

e r ror  t h a t  is  permitted by t h e  precision of t h e  ar i thmetic  being used. 

Variations i n  algorithms may be studied w i t h  error ar i thmetic  with an aim 

a t  achieving minimum er ror .  Moreover, it i s  e n t i r e l y  feasible t h a t  c r i t i c a l  

s teps  i n  t h e  ari thmetic be evaluated by several  algorithms using e r ror  

ar i thmetic ,  and t h a t  the r e s u l t  f o r  fur ther  calculat ion be selected on a 

dynamic bas is  t o  achieve t h e  smallest e r ror .  

If a higher precision is  needed than is  permitted by the  l e a s t  count 

of t h e  machine representation, e r ror  ar i thmetic  can again be u t i l i z e d  t o  

determine t o  what extent t h i s  would be helpful.  

When both of these techniques f a i l ,  reprogramming may provide an 

answer. 

approach; t h a t  is, one algorithm t o  achieve a maximum rate of convergence 

I n  t h i s  respect ,  a combination of algorithms may be a feas ib le  

and another t o  achieve a minimum e r ro r .  



- 10 - 

A potent ia l  source of d i f f i c u l t y  i n  e r ror  t r ac ing  a computational 

program occurs when a choice i n  branching is undecidable. 

t o  follow the  branching determined by the  nominal precision ar i thmetic  

w i t h  an aim at  report ing the  accrued er ror  i n  each quantity that was or ig i -  

na l ly  specif ied f o r  output and reporting instances i n  which t h e  choice i n  

branching is  a l t e r ed  when t h e  higher accuracy calculat ions are considered. 

One option i s  

If branching dichotomy develops when t h e  program i s  t raced  with t h i s  

option, it should be t raced  again following t h e  branchings determined by 

the  higher precision r e su l t s .  

t i o n s  do not terminate t o  t he  same program statement, it is reasonabze t o  

assume tha t  the  program is i n  trouble,  and that the calculat ions are sen- 

s i t i v e  t o  precision. 

t o  an alarm, while the nominal precision r e s u l t s  lead t o  an answer tha t  

appears reasonable. If the paths determined by these two options do ter-  

m i n a t e  t o  the  same program statement, the  answers produced by t h e  two op- 

t i o n s  may be compared t o  a i d  t h e  programmer i n  ascer ta ining i f  t h e  branch 

was material or immaterial. 

the  branch may again be c l a s s i f i e d  as material, and the  program can again 

be ascertained t o  be i n  trouble.  Unfortunately, if the two r e s u l t s  are 

about t h e  same, t h e  branch cannot be de f in i t e ly  c l a s s i f i ed  (although the  

probabi l i ty  i s  that it i s  inmaterial) .  

of intermediate repor t s ,  however, the  programmer can loca l ize  the t rouble  

and through further analysis  c l a s s i fy  the  branch. 

If the  paths determined by these two op- 

For example, the higher precis ion r e s u l t s  may lead 

If the two r e s u l t s  are appreciably d i f fe ren t ,  

By programming a su f f i c i en t  number 

A point should be made a t  t h i s  time regarding the  e r ror  ar i thmetics  

t h a t  have been proposed i n  the literature. These ari thmetics,  except 
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possibly f o r  range ari thmetic,  do not permit a simple procedure t o  t r a c e  

t h e  a l t e rna te  paths when a branch becomes undecidable. 

range ari thmetic,  w h i l e  t h e  procedure can be formulated, t he  report  i n  any 

precision sens i t ive  problem can be expected t o  be pessimistic,  and t h i s  

debugging a i d  can no longer be applied. 

I n  the case of 

STYLES OF IiEPORTING ERRORS 

If the e r ror  ar i thmetic  i s  t o  a id  t h e  programmer i n  t h e  analysis  of 

e r ror ,  t he  output report  must be such as t o  f a c i l i t a t e  t h i s  analysis.  The 

generated e r ror ,  i n  general, w i l l  tend t o  be small; however, because small 

e r ro r s  can be magnified by propagation, t h e  s t y l e s  of report ing should a l s o  

permit the study of la rge  errors.  

t o  study t h e  e r rors  separately f romthe  higher precis ion r e s u l t s  i n  order 

t o  t r a c e  t h e  propagation of e r ro r s  i n  t h e  machine representat ion of the 

r e s u l t s .  

Consequently, the programmer would want 

Several  styles could then be used f o r  t h e  report .  

must be eas i ly  ident i f ied ,  however, the  report  m u s t  a l s o  contain the  iden- 

t i f i c a t i o n  of t h e  style. 

ar i thmetic  has indicated t h a t  four d i f fe ren t  s t y l e s  would be useful. 

Since each s t y l e  

Experience with L e w i s  Research Center e r ro r  

Since the e r ro r s  i n  any loca l  algorithm would, i n  general, be small, 

t h e  na tura l  un i t  f o r  measuring e r ror  is  with respect t o  the minimum un- 

avoidable error .  In  t h i s  way, a programmer may r e l a t e  t h e  algorithm t o  

t h e  best obtainable w i t h  the working precision of the  machine. 

s t y l e  of error report ing is, therefore,  i n  terms of the l e a s t  count of the  

p r inc ipa l  past  of t h e  number. 

The first 

When the  numbers being reported represent a vector,  some common basis 

f o r  r e l a t i n g  the  individual  e r rors  t o  the  vector is  needed. Some vector 
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norm could properly be used for t h i s  comparison. As an example, the 

vector 

~ represents the so lu t ion  and the  first derivative of the  d i f f e r e n t i a l  

equation 

the value of Yn is  near 1, the  value of YA is near zero. Reporting 

the  errors with respect  t o  the least count of the  pr inc ipa l  par t  of the 

Y" + Y = 0, Y(0) = 1, and Y'(0) = 0. I n  t h i s  example, when 

number could be misleading. In  any case, a much more informative compari- 

son.could be made by report ing the er rors  i n  terms of the least count of 

the  machine representat ion of 1, which is  the  Euclidean norm f o r  t h i s  

vector. If the vector 

is t o  be reported f o r  t h i s  d i f f e ren t i a l  equation, then 1.0 again would 

suf f ice ,  since it represents  t h e  Gershgorin norm fo r  t h i s  vector. Another 

style of report ing the e r ror  i s  i n  terms of the least count r e l a t i v e  t o  

some calculated or prespec i f i td  number. 

If the  i n t e r n a l  representat ion and the report  representation of t h e  

number w e r e  on the  stme number base, the  previous two reports  would su f f i ce  

for  report ing the er rors .  However, if t h e  two representations were differ-  

ent ,  for example, binary and decimal, respect ively,  some s ide  calculat ion 

c 
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would be necessary t o  compare t h e  error  w i t h  t he  number on an absolute 

scale .  

signed e r ro r  on an absolute scale.  

Consequently, another useful s t y l e  of report ing i s  a report  of t h e  

Final ly ,  t he  e r ro r  associated with a number could be of no use t o  t h e  

e r ro r  analysis ,  but what would be desired i s  a report  of only the  nominal 

precision number with no e r ro r  report .  

time i n  not publishing an e r ro r  report  when none is necessary, but it 

would a l so  a i d  the programmer i n  minimizing the  repor t s  that a r e  t o  be 

studied. 

Not only would t h i s  save machine 

EXPERIENCE WITH ERROR ARITHMETIC 

The purpose of the  f i rs t  se r i e s  of experiments run w i t h  t h i s  arith- 

metic was  t o  obtain some i n i t i a l  experience with t h e  a b i l i t y  of t h e  a r i t h -  

metic t o  predict  e r ro r  estimates. 

ari thmetic,  t h e  examples were chosen so as t o  exclude t runcat ion e r ro r s  

from t h e  demonstration. 

comparison was based only on the  r a t iona l  operations t h a t  were employed. 

This was obtained e i the r  by a formal solution, or a program that  was run 

with a higher precision ari thmetic.  Specific i t e r a t i v e  procedures were 

chosen so t h a t  t h e  s t a r t i n g  value could be modified and so that it could 

be observed i f  t he  e r ro r  estimate was properly adjusted. The programs, 

problems, and modifications used t o  obtain t h i s  i n i € i a l  experience w e r e  

t h e  following: 

Program: Matrix inversion by biorthogonalization 

Since t h e  objective was t o  t es t  t h e  

In  order t o  accomplish t h i s ,  the  standard f o r  

Problems: (1) Well conditioned 4 by 4 matrix consis t ing of integer 

elements 

( 2 )  Hilbert  matrices o f  order 3, 4, and 5 
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Modifications: 

were adjusted as follows 

( 1) Unmodified 

( 2 )  x := r, % := 0 

(3) x := r + E,, 

The r e s u l t s  of t h e  first i t e r a t ion ,  t h a t  is, (r, Er) 

:= 0 

and then used as s t a r t i n g  values (x, Ex) f o r  t h e  second i t e r a t ion .  

Program: 

three-point procedure 

Integrat ion of second order d i f f e r e n t i a l  equations by an implici t  

Problems: (1) 

(2 )  

Modifications: 

+ y = 0, y(0) = 1, and y ' (0)  = 0 
dx2  

0 5 x 5 7 f o r  s tep s izes  h = 1, 1/2, 1/4, 1/8, 

1/16, 1/32, 1/64 

Bessel's equation of index zero 

y(0) = 1, y ' ( 0 )  = 0, and 

0 5 x 5 7 

y"(0) = -1/2 

f o r  s tep s i zes  h = 1, 1/2, 1/4, 1/8, 

1/16, 1/32 ,  1/64 

The r e s u l t s  of the f irst  i t e r a t i o n ,  t h a t  is, (r, Er) ,  

were adjusted as follows 

(1) Unmodified 

( 2 )  x := r, Ex := 0 

(3)  x := r + Er, Ex.:= 0 

and then  used as s t a r t i n g  values (x ,  E.,) f o r  t he  second i t e r a t ion .  

I n  a l l  these  cases the e r ro r  ari thmetic calculated an answer and gave a 

predic t ion  of e r ror .  Moreover, i n  most cases, t h e  predict ion of e r ro r  
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was excel lent .  It i s  in te res t ing  t o  note t h a t  i n  these examples an e s t i -  

mate of e r ro r  was obtained independently of whether or not an e r ror  was 

assumed i n  t h e  s t a r t i n g  value. 

The next series of experiments w a s  run t o  demonstrate some spec ia l  

problems w i t h  e r ror  ari thmetic.  

I n  i t e r a t i v e  procedures, s ince the  purpose of an e r ro r  t r a c e  i s  t o  

obtain an estimate of e r ror ,  t h e  process must be allowed t o  continue u n t i l  

both x and E, have converged. This w a s  demonstrated by using Newton's 

procedure t o  obtain the  root  of 

x = 1) with a s t a r t i n g  value of 

a good estimate of e r ror ,  but it required a f e w  extra i t e r a t i o n s  beyond 

f ( x )  = x3 - 3x2 + 3x - 1 ( t r i p l e  root at 

xo = 0. The process converged and gave 

those required for only the  pr incipal  pa r t  t o  converge. Contrasted t o  

t h i s  procedure, by using a modification of Newton's procedure, both con- 

vergence and an estimate of e r ror  were obtained i n  one i t e r a t ion .  The 

modification t h a t  w a s  used f o r  t h i s  demonstration was t o  replace f ( x )  by 

t h e  test  function f ( x ) / f ' ( x )  i n  Newton's i t e r a t i v e  method, which modifies 

t h e  algorithms such t h a t  

f I P  ' I1 .L  

( f ' ) 2  - f / f"  xk+l = xk - 

This improved convergence s temed from t h e  f a c t  t h a t  Newton's process a c t s  

as a first order process i n  the v ic in i ty  of a multiple root ,  while t he  

modified Newton's process i s  a second order process. 

Convergence, however, cannot be used as t h e  only bas i s  for obtaining 

an estimate of error i n  i t e r a t i v e  processes. Conflicts can occur i n  which 

t h e  pr inc ipa l  par t  and the error converge t o  numerically unrelated values. 

This was demonstrated i n  using the  modified Newton process t o  obtain t h e  
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solut ion t o  t h e  equation 

function ( i . e . ,  f/f ' )  t o  which Newton process is applied t o  obtain t h e  

modified algorithm: 

3x3 - x = 0. The following p lo t  shows t h e  t e s t  

The region of influence of t h e  roots ro = -114, r1 = 0, and 

r2 = l/-@ is 

respectively.  That is, when a s t a r t i n g  value is  i n  a pa r t i cu la r  region 

of influence, t h e  process w i l l  converge t o  i t s  associated root .  By 

put t ing t h e  nominal precision value of the  s t a r t i n g  value i n  one region 

of influence and the  nominal precision value plus the e r ro r  i n  another 

region of influence, the algorithm converges t o  two d i f f e ren t  roots.  

t h i s  example, by put t ing  the s t a r t i n g  value a t  

x + Ex = 1/3+, the process converged t o  0, while t h e  e r ro r  convbrged t o  

0.577. 

--a, < ro < -113, -113 < rl < 113, and 113 < r2 < m, 

I n  

x = 113' and 

This same phenomena was fu r the r  demonstrated by using Newton's 

algorithm t o  solve for t he  roots  of 

of t h e  d i s t r ibu t ions  of the  regions o f  influence,  t h e  process could be 

made t o  converge t o  t h e  whole gamut of p o s s i b i l i t i e s  with only s l i g h t  

modifications of the  Yow order d i g i t s  of t h e  s t a r t i n g  value. 

3x3 - x = 0. I n  t h i s  case, because 

That is, 
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by using s t a r t i n g  values that d i f f e r  only i n  t h e  low order d i g i t s ,  t h i s  

process could be made t o  converge t o  -1/3, 0,  or  1/3, and t o  give an estimate 

of e r ro r  i n  each case, and, a lso,  t o  converge t o  any combination of two 

d i f fe ren t  roots ,  t h a t  is, -1/3 and 0, 0 and 1/3, and -1/3 and 1/3. 

C OIVCLUS I O N  

The e r ror  ar i thmetic  presented i n  t h i s  paper is based on higher ac- 

curacy calculat ions and one i n  which signed e r ro r s  ra ther  than e r ro r  

bounds are calculated. The method fo r  ca lcu la t ing  t h e  e r rors  r e su l t i ng  

from a ra t iona l  calculat ion has been experimentally ve r i f i ed  t o  produce 

a r e a l i s t i c  estimate of errors.  

t i o n  of automatically t rac ing  e r ro r s  r e su l t i ng  from truncation errors .  

Specif ical ly ,  a r e a l i s t i c  estimate of e r ro r  can be obtained i n  the  evalua- 

t i o n  of a nonalgebraic function i f  a high accuracy rout ine is ava i lab le  

f o r  evaluating t h e  higher accuracy argument and comparing t h i s  t o  t h a t  

obtained through t h e  nominal precision arithmetic. A major problem may 

exist when calculat ions by two precisions a f f ec t  decisions i n  branching 

on value. I n  many cases, t h i s  w i l l  not cause d i f f i cu l ty ,  but it may i n  

tu rn  be a v i t a l  clue t o  the  source of d i f f i c u l t y  i n  an attempted so lu t ion  

of a problem. 

This success has encouraged the  considera- 

Final ly ,  i t e r a t i v e  processes were studied w i t h  t h i s  ar i thmetic  i n  

order t o  ascer ta in  whether a r e a l i s t i c  estimate of e r ror  accounting f o r  

both rounding and i t e r a t i v e  truncation e r ro r s  could be obtained. 

experience has indicated that i n  most cases t h i s  ari thmetic could be ef- 

f ec t ive ly  used as a debugging aid i n  i t e r a t i v e  processes. 

however, i n  which t h e  nominal precision r e s u l t  and the higher precis ion 

r e s u l t  converge t o  two unrelated answers. 

The 

Cases may arise, 


